Chapter 7

Appell-Lerch sums

7.1 The Jacobi theta function
Definition 7.1.1. We define the Jacobi theta function 9 : C x H — C by
19(,2;7') — Z (_1)1/—1/267ri1/27+27ri1/z‘

V€%+Z
We often omit the variable 7 when it is not varying and simply write ¢(z).

Proposition 7.1.2. Up to a multiplicative constant, ¥ (as a function of z) is the
unique entire function satisfying the elliptic transformation properties

z+1) = —9(2) and  9(z+7T) = —e TTTIEY(2).

Further ¥ is odd and the only zeros of ¥ are simple zeros in Zt + Z.

PROOF. Using that e*™ = —1 holds for all v € § + Z we immediately get

19(2 + 1) _ Z (_1)1/71/267ri1/27'+27ri1/(z+1) — Z (_1)1/71/267ri1/27'+27ri1/z _ _19(2).
veEZ+Z VEZHZ

Further replacing v by v + 1 we obtain

,19(2,) — Z (_1)V+1/267ri(y+1)27'+27ri(u+1)z

veL+Z
— _miTH2miz Z (_1)V—1/2€7Ti1/27'+27{"i1/(2+7’) _ _eTriT+27l'iZ,19(Z + 7_)
I/E%"FZ
and so ¥(z + 7) = —e ™2™ 9(z). Conversely, if an entire function f satisfies

fe+1)=—f(z) and  flz+7)=—e"TEf(2),
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then e ™% f(z) is 1-periodic and so we can write it as

77I'ZZf E A € 2mnz.

nez

We may set a, = e™(r2)"p -1 and then we have

§ b e mi(n+s ) T+27rz(n+ E : b TV T+27rzl/z
n+y

nez VELHTL

Using this formula we get

2
€7T’LT+27T1,Zf(Z + 7_ E /‘ b €7T’L(I/+1) TH2mi(v+1)z E : b,/, eﬂ'lll 2r42mivz
Ve +Z ves; +Z

and f(z) = —e™ 2™ f(z + 1) then gives b, = —b,_1 and b, = (—1)""1/2b; 5. Hence
we have obtained

f(Z) _ b1/2 Z (_1)1/—1/267r2'1/27+27ri1/z _ b1/2’19(2),

V€%+Z

as desired. Replacing v by —v in the definition of ¥ immediately gives J(—z) =
—3J(z). Hence ¥ has a zero for z = 0 and by the elliptic transformation properties
also in all points of Z7 4+ Z. What remains to be shown is that these zeros are
simple and that there are no further zeros. For this we count the number of zeros
of 9 inside the (fundamental) parallelogram P, := p + (0,1)7 + (0,1), where p € C
is such that there are no zeros on the boundary of F,. From complex analysis we
know that the number of zeros (counting multiplicities) of a holomorphic function
can be computed by integrating the logarithmic derivative along the boundary, so
the number of zeros of ¥ inside P, equals

1 19/( p+7+1 p+7+1
S Z
2mi Jop, VU(2) 2mi (/ / / / )
_L/ V(z) V(z+71) dy V' (2) 19’(2—1— 1) "
2w J, U(z)  O(z+T) 27rz » d(z) I(z+1) '
Differentiating the transformation properties of ¥ we find that ¥’ /4 is 1-periodic and
that

o o V(z) V(z+T) :
/ -9 TIT—2miz o TIT =212 g/ _ = 2771
V' (z+ 1) =2mie I(z) —e ¥ (z), so 92 et i

Hence the number of zeros of ¥ inside P, is fpp 4z = 1. Since P, contains exactly
one point from Z7 + Z, this means that we have already found all zeros and that
these zeros are all simple. O]
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Proposition 7.1.3. The function v satisfies the modular transformation properties

V(z; 7+ 1) =(0(z;7) and 19(3; —1> = —iv/—it ™Yz 7),

where (as usual) Cy := e*™ /N,

PROOF. For all v € 1 + Z we have that 1? € 1 + 2Z and so e™* = (5. From this
the first transformation property follows immediately. Further, using

/eﬂiu2/72m'uvdu: /_Z'Teﬂiv27' (71)
R

(Proposition 6.4.11 with A =1 € M;(R) and P = 1) we get that for the Fourier
transform of
f(’U) _ e—wive—wi(v+%)2/7'+27ri(v+%)x (ZL‘ e R)

we have
—TiU—T1e 152 . 1y, )
(Ff) (U) — / e iU 7rl(u+2) /T+27r7,(u+2)x Zﬂzuvdu
R
1
U—uU—735 . 1 oo .
— em(v+2)/e miu? /T—2miu( z+v+2)du
R
B . 1 S 152 . - ) . . 12 ) 1
= V/—ir el emilmatvta) T — /i emietremivemi(vig)ir—2milutg)ar
Using Poisson summation we then find

Wy, —1/1) = Zf Z (Ff)(n) = i —iT e Y (—zT 7).

nez ne”L

This identity holds for all x € R and by analytic continuation for all z € C. Now
setting x = z/7 and using that ¢ is odd we get the desired result. O]

Proposition 7.1.4. For all 7 € H we have

Ly 5.

S (07) = ()

Remark 7.1.5. Here ' means the derivative with respect to z. Further 7 is the
Dedekind n-function (as in remark 3.5.9), which satisfies the modular transformation
properties

N(r+1)=Cun(r) and  n(=1/7) = V=iry(7).
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PROOF OF PROPOSITION 7.1.4. Since 1 has no zeros in H, the function f : H —
C given by f(r) ='(0;7)/(2min(r)?) is holomorphic on H. Using

() = Y v(-1pEe T = g (11 0(g)).

211
U€%+Z
n(r)® =¢"3(1+ O(q))

we get f(7) = 14 O(q) and so f is also holomorphic at co. Further, taking the
derivative (with respect to z) and then setting z = 0 in the modular transformation
properties of ¢ immediately gives

9(0;74+ 1) = (05 7) and  9'(0;—1/7) = (—it)¥29'(0; 7).

Combining these modular transformation properties with those of 7, we see that f
transforms as a modular forms of weight 0 and so we have f € My(I';) = C. Hence
we find f = 1, which gives the desired result. [

Proposition 7.1.6 (Jacobi triple product identity). We have

o

19<Z;7') _ _q1/8<=71/2 H(l o q”)(l _ anfl)(l _ Cflqn) (q _ 627TiT, C _ €2ﬂiz).

n=1
PRrOOF. We define ¥* as the right hand side:

[e.e]

9*(2) = 0" (%7) == =S¢ = )1 = ¢ (1= ¢,

n=1

Replacing z by z 4+ 1 immediately gives ¢¥*(z + 1) = —9*(2) and if we replace z by
z + 7, we have to replace ( by (q. Hence we find

I (z47) = —¢ PP [ = g1 = ¢ (1 =g,
n=1
and using
[T -¢am = H — (")
n=1 n=1
[Ta-¢teh HJa-¢
n=1 n=1
we then get

1—-¢t o
0*(2 + 7_) — q71/2 : _CC 19*(2;) — _q71/2C7119*<Z> — _6771‘7,77271'2219*(2).
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Using Proposition 7.1.2 we find that v*(z;7) = ¢(7)9(z; 7), where ¢ doesn’t depend
on z. What remains to be shown is that ¢ = 1, for which it suffices to prove that
I(z;7) V*(z;7)

lim = lim — 2 £ (.
z—0 z z—0 z

The left hand side is 9/(0; 7) = 27in(7)? and the expression on the right equals

' 1 — e2miz B o0 . . .
—ql/glg%[(z—)é PTTO =g —=¢em—¢e
n=1
2miz) X
B ) T o) — 9 ()2
g/ lim —— 11(1 q")* = 2min(r)®.
Hence they are equal and nonzero, as desired. O

Corollary 7.1.7. We have
0o 1.
n(r)=> x(n)g=,
n=1

where x is the Dirichlet character modulo 12 with x(£1) =1 and x(£5) = —1.
Remark 7.1.8. In terms of the Kronecker symbol (see Definition 5.5.11) we have
x(n) = ().

Proor orF COROLLARY 7.1.7. If we replace 7 by 37 and set z = 7 in the Jacobi
triple product identity we find

9(ri37) = —¢ B A= )1 = ™)1 = ¢ = ¢ [ - ¢,
n=1 n=1
which equals —¢~ /(7). Hence we have
n(T) = —q"00(rs3r) = = Y7 (~1) R = 3T (1) agn
veES+L vES+Z

and substituting v =n — % gives

n(r) = (=1)"qm® T =3 (1)t 4 Y (g
neZ n=1 n=—00
= > xm)gE™ 4+ Y x(m)gEm,
m=1 m=1
m=5 (mod 6) m=1 (mod 6)

where in the last step we have substituted m = 6n — 1 in the first sum and m =
—6n + 1 in the second. This gives the desired result. O]



