
Chapter 7

Appell-Lerch sums

7.1 The Jacobi theta function

Definition 7.1.1. We define the Jacobi theta function # : C⇥H �! C by

#(z; ⌧) :=
X

⌫2 1
2+Z

(�1)⌫�1/2e⇡i⌫
2⌧+2⇡i⌫z.

We often omit the variable ⌧ when it is not varying and simply write #(z).

Proposition 7.1.2. Up to a multiplicative constant, # (as a function of z) is the
unique entire function satisfying the elliptic transformation properties

#(z + 1) = �#(z) and #(z + ⌧) = �e�⇡i⌧�2⇡iz#(z).

Further # is odd and the only zeros of # are simple zeros in Z⌧ + Z.

Proof. Using that e2⇡i⌫ = �1 holds for all ⌫ 2 1
2
+ Z we immediately get

#(z + 1) =
X

⌫2 1
2+Z

(�1)⌫�1/2e⇡i⌫
2⌧+2⇡i⌫(z+1) = �

X

⌫2 1
2+Z

(�1)⌫�1/2e⇡i⌫
2⌧+2⇡i⌫z = �#(z).

Further replacing ⌫ by ⌫ + 1 we obtain

#(z) =
X

⌫2 1
2+Z

(�1)⌫+1/2e⇡i(⌫+1)2⌧+2⇡i(⌫+1)z

= �e⇡i⌧+2⇡iz
X

⌫2 1
2+Z

(�1)⌫�1/2e⇡i⌫
2⌧+2⇡i⌫(z+⌧) = �e⇡i⌧+2⇡iz#(z + ⌧)

and so #(z + ⌧) = �e�⇡i⌧�2⇡iz#(z). Conversely, if an entire function f satisfies

f(z + 1) = �f(z) and f(z + ⌧) = �e�⇡i⌧�2⇡izf(z),
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then e�⇡izf(z) is 1-periodic and so we can write it as

e�⇡izf(z) =
X

n2Z

an e
2⇡inz.

We may set an = e⇡i(n+
1
2 )

2⌧ bn+ 1
2
and then we have

f(z) =
X

n2Z

bn+ 1
2
e⇡i(n+

1
2 )

2⌧+2⇡i(n+ 1
2 )z =

X

⌫2 1
2+Z

b⌫ e
⇡i⌫2⌧+2⇡i⌫z.

Using this formula we get

e⇡i⌧+2⇡izf(z + ⌧) =
X

⌫2 1
2+Z

b⌫ e
⇡i(⌫+1)2⌧+2⇡i(⌫+1)z =

X

⌫2 1
2+Z

b⌫�1 e
⇡i⌫2⌧+2⇡i⌫z

and f(z) = �e⇡i⌧+2⇡izf(z+ ⌧) then gives b⌫ = �b⌫�1 and b⌫ = (�1)⌫�1/2b1/2. Hence
we have obtained

f(z) = b1/2
X

⌫2 1
2+Z

(�1)⌫�1/2e⇡i⌫
2⌧+2⇡i⌫z = b1/2#(z),

as desired. Replacing ⌫ by �⌫ in the definition of # immediately gives #(�z) =
�#(z). Hence # has a zero for z = 0 and by the elliptic transformation properties
also in all points of Z⌧ + Z. What remains to be shown is that these zeros are
simple and that there are no further zeros. For this we count the number of zeros
of # inside the (fundamental) parallelogram Pp := p + (0, 1)⌧ + (0, 1), where p 2 C
is such that there are no zeros on the boundary of Pp. From complex analysis we
know that the number of zeros (counting multiplicities) of a holomorphic function
can be computed by integrating the logarithmic derivative along the boundary, so
the number of zeros of # inside Pp equals

1

2⇡i

Z

@Pp

#0(z)

#(z)
dz =

1

2⇡i

✓

Z p+1

p

+

Z p+⌧+1

p+1

�
Z p+⌧+1

p+⌧

�
Z p+⌧

p

◆

#0(z)

#(z)
dz

=
1

2⇡i

Z p+1

p

✓

#0(z)

#(z)
� #0(z + ⌧)

#(z + ⌧)

◆

dz � 1

2⇡i

Z p+⌧

p

✓

#0(z)

#(z)
� #0(z + 1)

#(z + 1)

◆

dz.

Di↵erentiating the transformation properties of # we find that #0/# is 1-periodic and
that

#0(z + ⌧) = 2⇡ie�⇡i⌧�2⇡iz#(z)� e�⇡i⌧�2⇡iz#0(z), so
#0(z)

#(z)
� #0(z + ⌧)

#(z + ⌧)
= 2⇡i.

Hence the number of zeros of # inside Pp is
R p+1

p
dz = 1. Since Pp contains exactly

one point from Z⌧ + Z, this means that we have already found all zeros and that
these zeros are all simple.
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Proposition 7.1.3. The function # satisfies the modular transformation properties

#(z; ⌧ + 1) = ⇣8#(z; ⌧) and #
⇣z

⌧
;�1

⌧

⌘

= �i
p�i⌧ e⇡iz

2/⌧#(z; ⌧),

where (as usual) ⇣N := e2⇡i/N .

Proof. For all ⌫ 2 1
2
+ Z we have that ⌫2 2 1

4
+ 2Z and so e⇡i⌫

2
= ⇣8. From this

the first transformation property follows immediately. Further, using

Z

R
e�⇡iu2/⌧�2⇡iuvdu =

p�i⌧ e⇡iv
2⌧ (7.1)

(Proposition 6.4.11 with A = 1 2 M1,1(R) and P = 1) we get that for the Fourier
transform of

f(v) = e�⇡ive�⇡i(v+ 1
2 )

2/⌧+2⇡i(v+ 1
2 )x (x 2 R)

we have

�Ff
�

(v) =

Z

R
e�⇡iu�⇡i(u+ 1

2 )
2/⌧+2⇡i(u+ 1

2 )x�2⇡iuvdu

u!u� 1
2= e⇡i(v+

1
2 )

Z

R
e�⇡iu2/⌧�2⇡iu(�x+v+ 1

2 )du

=
p�i⌧ e⇡i(v+

1
2 )e⇡i(�x+v+ 1

2 )
2⌧ = i

p�i⌧ e⇡ix
2⌧e⇡ive⇡i(v+

1
2 )

2⌧�2⇡i(v+ 1
2 )x⌧ .

Using Poisson summation we then find

#(x;�1/⌧) =
X

n2Z

f(n) =
X

n2Z

�Ff
�

(n) = i
p�i⌧ e⇡ix

2⌧#(�x⌧ ; ⌧).

This identity holds for all x 2 R and by analytic continuation for all x 2 C. Now
setting x = z/⌧ and using that # is odd we get the desired result.

Proposition 7.1.4. For all ⌧ 2 H we have

1

2⇡i
#0(0; ⌧) = ⌘(⌧)3.

Remark 7.1.5. Here 0 means the derivative with respect to z. Further ⌘ is the
Dedekind ⌘-function (as in remark 3.5.9), which satisfies the modular transformation
properties

⌘(⌧ + 1) = ⇣24⌘(⌧) and ⌘(�1/⌧) =
p�i⌧ ⌘(⌧).
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Proof of Proposition 7.1.4. Since ⌘ has no zeros in H, the function f : H �!
C given by f(⌧) = #0(0; ⌧)/

�

2⇡i⌘(⌧)3
�

is holomorphic on H. Using

1

2⇡i
#0(0; ⌧) =

X

⌫2 1
2+Z

⌫ (�1)⌫�
1
2 e⇡i⌫

2⌧ = q1/8
�

1 +O(q)
�

,

⌘(⌧)3 = q1/8
�

1 +O(q)
�

we get f(⌧) = 1 + O(q) and so f is also holomorphic at 1. Further, taking the
derivative (with respect to z) and then setting z = 0 in the modular transformation
properties of # immediately gives

#0(0; ⌧ + 1) = ⇣8#
0(0; ⌧) and #0(0;�1/⌧) = (�i⌧)3/2#0(0; ⌧).

Combining these modular transformation properties with those of ⌘, we see that f
transforms as a modular forms of weight 0 and so we have f 2 M0(�1) = C. Hence
we find f ⌘ 1, which gives the desired result.

Proposition 7.1.6 (Jacobi triple product identity). We have

#(z; ⌧) = �q1/8⇣�1/2

1
Y

n=1

(1� qn)(1� ⇣qn�1)(1� ⇣�1qn) (q = e2⇡i⌧ , ⇣ = e2⇡iz).

Proof. We define #⇤ as the right hand side:

#⇤(z) = #⇤(z; ⌧) := �q1/8⇣�1/2

1
Y

n=1

(1� qn)(1� ⇣qn�1)(1� ⇣�1qn).

Replacing z by z + 1 immediately gives #⇤(z + 1) = �#⇤(z) and if we replace z by
z + ⌧ , we have to replace ⇣ by ⇣q. Hence we find

#⇤(z + ⌧) = �q�3/8⇣�1/2

1
Y

n=1

(1� qn)(1� ⇣qn)(1� ⇣�1qn�1),

and using

1
Y

n=1

(1� ⇣qn) =
1

1� ⇣

1
Y

n=1

(1� ⇣qn�1),

1
Y

n=1

(1� ⇣�1qn�1) = (1� ⇣�1)
1
Y

n=1

(1� ⇣�1qn)

we then get

#⇤(z + ⌧) = q�1/21� ⇣�1

1� ⇣
#⇤(z) = �q�1/2⇣�1#⇤(z) = �e�⇡i⌧�2⇡iz#⇤(z).
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Using Proposition 7.1.2 we find that #⇤(z; ⌧) = c(⌧)#(z; ⌧), where c doesn’t depend
on z. What remains to be shown is that c ⌘ 1, for which it su�ces to prove that

lim
z!0

#(z; ⌧)

z
= lim

z!0

#⇤(z; ⌧)

z
6= 0.

The left hand side is #0(0; ⌧) = 2⇡i⌘(⌧)3 and the expression on the right equals

�q1/8 lim
z!0



(1� e2⇡iz)

z
⇣�1/2

1
Y

n=1

(1� qn)(1� ⇣qn)(1� ⇣�1qn)

�

= �q1/8 lim
z!0

(1� e2⇡iz)

z

1
Y

n=1

(1� qn)3 = 2⇡i⌘(⌧)3.

Hence they are equal and nonzero, as desired.

Corollary 7.1.7. We have

⌘(⌧) =
1
X

n=1

�(n)q
1
24n

2
,

where � is the Dirichlet character modulo 12 with �(±1) = 1 and �(±5) = �1.

Remark 7.1.8. In terms of the Kronecker symbol (see Definition 5.5.11) we have
�(n) =

�

12
n

�

.

Proof of Corollary 7.1.7. If we replace ⌧ by 3⌧ and set z = ⌧ in the Jacobi
triple product identity we find

#(⌧ ; 3⌧) = �q�1/8

1
Y

n=1

(1� q3n)(1� q3n�2)(1� q3n�1) = �q�1/8

1
Y

n=1

(1� qn),

which equals �q�1/6⌘(⌧). Hence we have

⌘(⌧) = �q1/6#(⌧ ; 3⌧) = �
X

⌫2 1
2+Z

(�1)⌫�
1
2 q

3
2⌫

2+⌫+ 1
6 =

X

⌫2 1
2+Z

(�1)⌫+
1
2 q

1
24 (6⌫+2)2

and substituting ⌫ = n� 1
2
gives

⌘(⌧) =
X

n2Z

(�1)nq
1
24 (6n�1)2 =

1
X

n=1

(�1)nq
1
24 (6n�1)2 +

0
X

n=�1
(�1)nq

1
24 (6n�1)2

=
1
X

m=1
m⌘5 (mod 6)

�(m)q
1
24m

2
+

1
X

m=1
m⌘1 (mod 6)

�(m)q
1
24m

2
,

where in the last step we have substituted m = 6n � 1 in the first sum and m =
�6n+ 1 in the second. This gives the desired result.


